六年制學程/01/2013.10.15:修訂版本之間的差異

出自六年制學程
跳轉到: 導覽搜尋
圖形重新排列證明畢氏定理
平方
第 12 行: 第 12 行:
 
-->|]]
 
-->|]]
  
[[File:Rtriangle.svg|thumb|right|200px|直角三角形,C為直角,對於角A而言,a為對邊、b為鄰邊、c為斜邊]]
+
===直角三角形===
有一个[[角]]为[[直角]]的[[三角形]]称为'''直角三角形'''。在直角三角形中,直角相邻的两条[[边]]称为[[直角边]]。直角所对的边称为[[斜边]]。直角三角形直角所对的边也叫作「弦」。若兩條直角邊不一樣長,短的那條邊叫作「勾」,長的那條邊叫作「股」
+
[[File:Rtriangle.svg|thumb|right|500px|直角三角形,C為直角,對於角A而言,a為對邊、b為鄰邊、c為斜邊]]
  
 
=== 圖形重新排列證明畢氏定理 ===
 
=== 圖形重新排列證明畢氏定理 ===
 
[[File:Pythagorean proof.svg|500px|thumb|right|以面積減算法證明]]
 
[[File:Pythagorean proof.svg|500px|thumb|right|以面積減算法證明]]
 
兩個大正方形的面積皆為(a+b)<sup>^2</sup>。把四個相等的三角形移除後,左方餘下面積為a<sup>2</sup>+b<sup>2</sup>,右方餘下面積為c<sup>2</sup>,兩者相等。
 
兩個大正方形的面積皆為(a+b)<sup>^2</sup>。把四個相等的三角形移除後,左方餘下面積為a<sup>2</sup>+b<sup>2</sup>,右方餘下面積為c<sup>2</sup>,兩者相等。

2013年10月14日 (一) 22:52的修訂版本

畢氏定理

a2+b2=c2

面積公式

  • 長方形面積=長×寬
  • 三角形面積=底×高/2
  • 正方形面積=邊長×邊長

平方

檔案:Five Squared.svg

直角三角形

檔案:Rtriangle.svg
直角三角形,C為直角,對於角A而言,a為對邊、b為鄰邊、c為斜邊

圖形重新排列證明畢氏定理

檔案:Pythagorean proof.svg
以面積減算法證明

兩個大正方形的面積皆為(a+b)^2。把四個相等的三角形移除後,左方餘下面積為a2+b2,右方餘下面積為c2,兩者相等。